
SNUG Boston 2002 Page 1 Clock Management Tips
on a Multi-Clock Design

Clock Management Tips
on a Multi-Clock Design

Sylvain Haas

Motorola Semiconductor Products Sector

Sylvain.Haas@motorola.com

ABSTRACT

The ideal synthesizable design has only one clock and all its flip-flops are triggered on
its positive edge. That makes the whole flow a lot easier, from synthesis to post-route tim-
ing analysis via DFT stages. Unfortunately, that dream is usually far from reality; the
design uses both clock edges, has latches, several internal clocks, sometimes coming from
different PLLs, and even asynchronous inputs that need to be used as edge triggers.

The purpose of this paper is to give a set of mechanisms and synthesis tips that should
get the design as close as possible to the ideal case. The clock issues are progressively
introduced; a solution is always proposed, either as a synthesizable positive edge-triggered
mechanism, or as a constraint tip, with its application requirements and its drawbacks.
Every proposition has already been used on a real design case.

SNUG Boston 2002 Page 2 Clock Management Tips
on a Multi-Clock Design

1.0 Introduction
In current designs, multiple clocks are utilized. There are the clocks required to time

external interfaces, internal clocks generated from different phase-lock-loops, etc.
There are a many problems due to complex clocking schemes. Such as inadequate false

paths, some real paths are filtered out and thus not analyzed. The analysis itself becomes
very complex because the false path definitions did not remove all the false path viola-
tions. It may require case analysis and even dynamic timing analysis with functional pat-
terns to detect particular problems.

Moreover, the timing analysis at chip level is conducted by designers that have to merge
several complex clocking schemes and analyze the module timings. Unfortunately they do
not have complete knowledge of all the designs and thus have a difficult task. To ease
design and integration, the best structure is one single clock and all the module registers
are triggered from the same edge (usually positive).

The question becomes how to achieve that best design structure and still meet all the
constraints that were solved by the presence of multiple clocks. To reach that goal or at
least approach it, this paper proposes a two-step process:

• remove all the clock oddities,

• iffor the remaining clocks, provide tips to facilitate synthesis and reduce the
negative impact of multiple clocks, asynchronous clocks or multiple clock
edge utilization.

Solutions are fully described, including a schematic, a timing diagram and Verilog code
sample; pros and cons are studied, with a special focus on power as it is often a good rea-
son for having multiple clocks within a design.

All the solutions assume the existence of a relatively high frequency clock in the mod-
ule, which is considered as the main clock in the following paragraphs.

2.0 Low frequency clock reception
Let us first consider a module that receives a low frequency clock in addition to its high

frequency main clock. That low frequency clock is generated externally to the module and
serves as reference for input and/or output data. This is typically the case with serial and
parallel external interfaces like UART and JTAG.

The typical implementation uses the input low frequency clock to drive a few flip-flop
clock pins, which requires a dedicated clock tree and multiple synchronization mecha-
nisms everywhere data goes from that clock domain to the main chip clock domain.

The related issues are numerous: having asynchronous clocks makes verification, syn-
thesis and timing analysis more complex, every additional clock requires a dedicated
effort to setup the design constraints and during clock-tree synthesis.

2.1 Do you really need a clock?
To reduce the number of clocks, the first step consists in analyzing the functionality in

order to find a synchronous mechanism that will be equivalent.

SNUG Boston 2002 Page 3 Clock Management Tips
on a Multi-Clock Design

Sometimes, data signals are connected to flip-flop clock pins to implement a very par-
ticular behavior. A typical example is the detection of an input signal variation when the
main clock of the module is gated off. Provided the signal toggle rate is low compared to
the main clock frequency, it is usually possible to implement a synchronous mechanism
that fits the need.

Below is an example that illustrates such a clock usage and proposes a simple mecha-
nism to perform the same function. The goal of that paragraph is simply to demonstrate
that it is sometimes possible to have a single clock solution and encourage designers to
spend enough time searching for that kind of solutions before considering adding another
clock to their module.

2.1.1 Problem description
The peripheral has to trigger an asynchronous wake-up command

(async_trigger_posedge) to the CPU upon reception of the rising transition of an input
signal (async_trigger). The wake-up command is cleared by the CPU by writing to a spe-
cific register that triggers the clr_async_trigger signal; that clearing is always performed
with the main clock running.

That mechanism has to work when the main clock is not running. The resulting com-
mand does not need to be synchronous and it cannot be as the reference clock is not
always available.

2.1.2 Former solution
The async_trigger_posedge signal is connected to a flip-flop clock pin which naturally

detects its rising edge regardless of the main clock status. The corresponding Verilog code
is available below:
reg async_trigger_posedge;
reg clr_async_trigger;
wire clr_async_trigger_reset_b = (~clr_async_trigger) & main_reset_b;

always @(posedge async_trigger or negedge clr_async_trigger_reset_b)
if (!clr_async_trigger_reset_b)

async_trigger_posedge <= 1’b0;
else

async_trigger_posedge <= 1’b1;

always @(posedge main_clk or negedge main_reset_b)
if (!main_reset_b)

clr_async_trigger <= 1’b0;
else if (clear_async_trigger)

clr_async_trigger <= 1’b1;
else if (start_detecting_async_trigger)

clr_async_trigger <= 1’b0;

2.1.3 New system
The exact functionality analysis shows that the system only goes to sleep once the

async_trigger input signal is low. That means detecting its rising edge is similar to detect-
ing when it is high. The proposition is to implement a small FSM (one flip-flop) the state
of which is combined with the incoming signal to generate the wake-up command. Before
going back to sleep, the system enables the propagation of the input signal high level to
the wake-up command. The following Verilog code implements that single-clocked solu-

SNUG Boston 2002 Page 4 Clock Management Tips
on a Multi-Clock Design

tion:
reg detecting;
wire async_trigger_posedge = (detecting == 1’b1)? async_trigger : 1’b0;

always @(posedge main_clk or negedge main_reset_b)
if (!main_reset_b)

detecting <= 1’b0;
else if (clear_async_trigger)

detecting <= 1’b0;
else if (start_detecting_async_trigger)

detecting <= 1’b1;

Simply by reconsidering the problem, it was possible to find a solution that does not
require the addition of a clock with all its inherent drawbacks.

2.2 Clock sampling mechanism
We have seen that it is possible to remove some unnecessary clocks. The example above

was a solution for a very particular case. What follows is a well-known general solution to
connect an external interface with a low frequency reference clock, to a module that has a
high frequency clock at its disposal. Yet, that type of solution is not always used despite of
its simplicity. We will determine its real limitations with a special interest in power con-
sumption that is a common argument against its usage.

The described system is implemented with clock and data separate. However, the same
principles can be applied when clock and data are merged like in UARTs.

The incoming clock is sampled with the much faster main reference clock, which gener-
ates an enable when the desired clock edge is detected. Based on that enable, all inputs are
sampled and all outputs are generated. The computational logic should work based on that
enable to calculate the output data, which matches the interface throughput capability.

SNUG Boston 2002 Page 5 Clock Management Tips
on a Multi-Clock Design

Figure 1 Low frequency clock synchronizer

Figure 2 Timing diagram

D Q

Q

D Q

Q

D Q

Q

low_clk
negedge_enable_main

posedge_enable_main

D Q

Q

input_low

anyedge_enable_main

input_main

DQ

Q

output_low

output_main

anyedge_enable_main

sync1 sync2 sync3

din

dout

BA

B CA

Di0 Di1

Di2Di1Di0

main_clk

low_clk

pos_en

in_low

in_main

out_main

out_low

sync1

sync2

sync3

hold

setup

SNUG Boston 2002 Page 6 Clock Management Tips
on a Multi-Clock Design

Figure 3 Verilog code
// inputs & outputs
input main_clk, main_rst_b, output_main;
output input_main;
input low_clk, input_low;
output output_low;
// FFs declaration
reg sync1, sync2, sync3;
reg din, dout;
// low_clk edges detection
wire posedge_enable_main = sync2 & !sync3;
wire negedge_enable_main = !sync2 & sync3;
// input & output
wire input_main = din;
wire output_low = dout;
// synchronization logic
always @(posedge main_clk or negedge main_rst_b)

if (!main_rst_b)
begin
sync1 <= 0;
sync2 <= 0;
sync3 <= 0;
din <= 0;
dout <= 0;
end

else
begin
sync1 <= low_clk;
sync2 <= sync1;
sync3 <= sync2;
if (posedge_enable_main)

begin
din <= input_low;
dout = output_main;
end

end

2.3 Implementation requirements
The first sampling flip-flop (sync1) drastically reduces the risk of metastability propaga-

tion since its output has a full cycle to resolve to one or zero until it is sampled by the next
flip-flop (sync2). That system assumes the sampled signal edges are sharp enough to pre-
vent more than one metastability occurrence per edge because there would be difficulty
detecting several edges.

The first stage should be removed if it can be guaranteed the flip-flop outputs will not
become metastable if their D input changes during the capture window. That helps reduc-
ing the latency between the edge and its detection as an enable signal.

Another means to achieve better efficiency is the use of both clock edges for the syn-
chronizer: a negedge flip-flop for sync2 further reduces the detection latency. However,
that last possibility should be reserved to cases when the posedge solution cannot be used,
as using both edges negatively impacts the DFT, dual phase makes the design more com-
plex and the enable is only available less than a half-cycle before the next rising edge.

The minimum sampling frequency is determined by the hold time of the input data from

SNUG Boston 2002 Page 7 Clock Management Tips
on a Multi-Clock Design

the low clock reference edge and by the setup time required for the output data. The calcu-
lation for both constraints is detailed below and an application example is also proposed.

2.3.1 Hold time constraint
The worst case equation assumes the low clock reference edge happens at the exact end

of the capture violation window and the sampling flip-flop state remains at the value
before the edge.

tHOLD > 3 × tmain + tph + tskew + th + ts
which becomes

tmain < (tHOLD - tph - tskew - th - ts)/3
where tmain is the main clock maximal cycle duration, tph is the main clock maximal

phase shift between two successive cycles, tskew is the clock tree maximal skew, th and ts
are respectively the hold time of din and the setup time of sync1.

Figure 4 tHOLD calculation

If the library flip-flop outputs cannot become metastable, the removal of sync1 trans-
lates into the following equation:

tmain < (tHOLD - tph - tskew - th - ts)/2
And using negative edge-triggered flip-flop for sync2 respectively gives

tmain < (tHOLD - tph - tskew - th - ts)/2.5
when sync1 is kept and

tmain < (tHOLD - tph - tskew - th - ts)/1.5
when sync1 is removed.
As far as the input data is setup before the reference edge of its clock, it does not gener-

ate any particular constraint to the system. If this is not the case, there is a maximum sam-

low_clk

main_clk
(sync1)

ts

tskew

th

3 × tmain

Q
(sync1)

pos_en

main_clk
(din)

in_low

D
(din)

tHOLD

SNUG Boston 2002 Page 8 Clock Management Tips
on a Multi-Clock Design

pling frequency. It is however very easy to adapt the system by delaying the sampling.

2.3.2 Setup time constraint
The same type of calculation is performed to determine the frequency constraint derived

from the required setup time of output data.
tSETUP < tlow - tphlow - 3 × tmain - tskew - ts - tck2q

which becomes
tmain < (tlow - tphlow - tSETUP - tskew - ts - tck2q)/3

where tlow is the low clock minimal cycle duration, tphlow is the low clock maximal
phase shift between two successive cycles, tmain is the main clock maximal cycle duration,
tskew is the clock tree maximal skew, tck2q and ts are respectively the clock-to-Q delay of
dout and the setup time of sync1.

If the library flip-flop outputs cannot become metastable, the removal of sync1 trans-
lates into the following equation:

tmain < (tlow - tphlow - tSETUP - tskew - ts - tck2q)/2
The output data hold constraint can create a maximum sampling frequency constraint if

it is not null; it is easy to solve that issue by further delaying the dout update.

2.3.3 Example
Let us consider a JTAG interface with a 20 MHz TCK (50 ns cycle), 0.5% frequency

drift, 1% phase shift, 10 ns setup required for TDO, and 40 ns hold for TDI and TMS.
The flip-flops have the following characteristics: th = 0.1 ns, ts = 0.4 ns, tck2q = 0.6 ns.
The sampling clock worst case parameters are 0.5 ns skew, 0.5% phase shift and 0.3%

frequency drift. We are looking for its maximal cycle delay tmain.

• the tHOLD constraint gives:
40 > (3 + 0.5/100) × tmain + 0.4 + 0.1 + 0.5
tmain < 39.0/3.005
tmain < 12.98 ns

• and the tSETUP constraint:
50 × 0.995 − 50 × 1/100 − 0.4 − 0.6 − (3 + 0.5/100) × tmain - 0.5 > 10
tmain < 12.56 ns

• taking the tighter constraint and considering the frequency drift:
tmain < 12.56/(1 + 0.3/100)
tmain < 12.52 ns (79.8 MHz minimum)

So, the main frequency clock must be about 80 MHz to safely oversample the JTAG
TCK. If the flip-flop outputs do not become metastable and sync1 flip-flop is removed, the
sampling frequency drops to 54 MHz.

If sync2 is implemented as a negative edge-triggered flip-flop, the main clock frequency
limits respectively become 67 MHz and 40 MHz.

2.4 Pros & Cons
Why is it so interesting to use that mechanism?

SNUG Boston 2002 Page 9 Clock Management Tips
on a Multi-Clock Design

• That solution is safe, provided the sampling frequency constraints are met,
which is easily determined by calculation as it was shown above.

• The design is simplified, which impacts all the stages; coding, verification,
synthesis, timing analysis (dynamic analysis is no more necessary), layout and
especially clock tree synthesis. It is merely impossible to find a simpler solu-
tion with the same level of safety; as soon as you introduce a new clock
domain in a design, there needs a synchronization mechanism somewhere.
The proposed solution has only one in the simplest form; there cannot be less.

• DFT compliancy is preserved. There is no need for additional logic to circum-
vent multiple clock issues, which tends to add complexity and area to the
design. And over 99.5% of fault coverage can be achieved, which is a pipe-
dream when you have to rely on functional patterns because some sections
could not be easily made testable.

But there are limitations and drawbacks:

• There is not complete freedom in the clock ratio: the sampling clock fre-
quency is constrained, thus preventing the use of that system in all cases.

• Synthesis is performed with tighter constraints; that causes an increase of the
module area; it may be sometimes difficult to meet the timing goal and multi-
cycle paths constraints should be considered. The area impact is further evalu-
ated in the following paragraph.

• Power consumption? This is the most common objection to the principle of
synchronizing the input clock as if it were data. As soon as you assume there
is a synchronizer somewhere in the design, that part of the mechanism
requires the same amount of power regardless of its location; the rest of the
design takes advantage of existing clock-gating techniques to reduce power
consumption to about the same level as systems that use the incoming clock as
a clock. That assumption is also studied in the next paragraph.

2.5 Power and area impact
The study was performed on two designs. Several variations of the designs have gone

through power conscious synthesis and power analysis using Design Compiler and Power
Compiler.

The exact flow was taken from the Power Compiler user guide:

• RTL simulation to generate RTL activity file.

• Preliminary synthesis with clock gating insertion.

• Incremental compile with power optimization using backannotated RTL activ-
ity.

• Gate-Level simulation to generate post-synthesis activity file.

• Power analysis of backannotated GL activity. It was done for three running
modes; in ‘sleep’ mode, there is no toggle on any low frequency input pin

SNUG Boston 2002 Page 10 Clock Management Tips
on a Multi-Clock Design

including the clock; in ‘idle’ mode, the low frequency clock is running but the
inputs are left idle; in ‘run’ mode, the system is stimulated by its low fre-
quency inputs.

The design variations that went through the flow:

• Dual-clock design with minimized synchronization. The first clock is the
input low frequency reference, the second clock is the main chip clock. There
is a single synchronizer in the module. That design is taken as the reference in
terms of power consumption.

• Dual-clock design with large synchronization. It is the same as above except
several synchronizers are instantiated; the objective was simply to measure
the impact on power when synchronizers are multiplied, as it is not guaranteed
that a single synchronizer dual-clock solution is always achievable.

• Single-clock design with Power Compiler automatic clock gating.

• Single-clock design with two levels of clock gating; the first level was instan-
tiated in the Verilog code, using the enable generated from the low frequency
clock positive edge detection to gate the whole design logic except the syn-
chronizer itself (the Verilog code was thus different from what is proposed in
“Clock sampling mechanism” on page 4). The second level was automatically
generated by Power Compiler.

It is important to understand that inserting clock gating makes the Gate-Level structure
of the synchronization mechanism slightly different from what is presented in “Clock
sampling mechanism” on page 4. The synchronizer and edge detection remain unchanged,
but din and dout registers receive a clock gated by the enable generated from the synchro-
nizer and the multiplexer at their input is removed. Power Compiler should automatically
perform that modification.

Table 1: Power and area impact study of low frequency clock synchronization

design avg
(µW)

sleep
(µW)

idle
(µW)

run
(µW)

area
(gates)

A

dual-clock (1 sync.) 19.55 13.94 15.56 23.35 639

dual-clock (5 sync.) 35.91 30.19 31.81 39.80 710

single-clock (1 level) 39.04 28.82 33.17 41.87 723

single-clock (2 levels) 19.61 13.90 15.52 23.59 646

B

dual-clock (1 sync.) 12.51 10.14 13.59 13.81 729

dual-clock (3 sync.) 12.63 10.20 13.65 14.06 762

single-clock (1 level) 26.13 23.75 27.20 27.43 731

single-clock (2 levels)a 12.46 10.00 13.57 13.80 724

SNUG Boston 2002 Page 11 Clock Management Tips
on a Multi-Clock Design

The major issue when designing the dual-clock solution was the capture of data clocked
at the main frequency; it required a synchronized hand-shaking mechanism. As soon as
several such synchronizers are used, not surprisingly, the power consumption increases
significantly. It is interesting to notice that three synchronizers were necessary for func-
tional safety in design B; the single synchronizer solution was only implemented for
power comparison purpose. However, both additional synchronizers are clocked at the
low frequency, so they have very little impact on the power consumption.

The single-clock solution, which only relies on Power Compiler for the clock gating,
clearly shows the limits of the tool. As it is only able to generate one level of clock-gating
cells, the enables are combined together to give a specific clock enable for every register
bank (the size limit was set to eight). That logic toggles frequently, which costs power.
Such a solution cannot compete for power or area with the dual-clock solution, even when
the dual-clock solution uses multiple synchronizers.

Since Power Compiler is unable to manage several levels of clock gating, a first level is
manually instantiated in a separate wrapper (see footnote a from table 1); it takes the
enable active when the low-frequency-clock edge was detected to gate off all the flip-flops
of the design. That makes it become similar to the dual-clock version with one synchro-
nizer; the synchronizer is shifted at the low frequency clock port, one clock-gating cell
drives the rest of the design and its enable is active when the low frequency clock rising
edge is detected; which means all the design registers, except the synchronizer, receive the
exact same amount of clock edges as the registers in the dual-clock version. The single-
clock power consumption and area are thus similar to those achieved by the dual-clock
with one synchronizer. The layout and clock tree impact was not evaluated; a priori, it can
favor any solution. The DFT hardware cost was not considered either, but the dual-clock
solution is necessarily more complex, thus requiring more DFT logic than the single-clock
solution (e.g. clock muxes, etc.).

3.0 Low frequency clock generation
After considering the case when the design receives data and its reference clock, let us

focus on the case when the low frequency reference is generated internally and does not
need to be output. Typical examples are SSI, USB, etc.

The clock generators are often directly derived from the main reference clock PLL and
sometimes from another PLL, using clock dividers. That creates several asynchronous
clocks within the design. The drawbacks are similar to those listed in the previous para-
graph; asynchronous clocks make verification, synthesis and timing analysis more com-
plex; every additional clock requires specific design constraints and clock-tree synthesis;
testability is lower because of the ATPG limitations.

It will sometimes be possible to implement a synchronous mechanism that yields the
desired low frequency reference from the main clock. All the previous drawbacks are
removed, but that kind of solution has its own limitations that will be analyzed. The kind

a. Manually instantiated clock-gating cells had to be put in a module wrapper
because Power Compiler was unable to understand the cell logic when there was
already clock-gating logic and thus refused to add another level of clock gates.

SNUG Boston 2002 Page 12 Clock Management Tips
on a Multi-Clock Design

of synchronous mechanism proposed below should be the selected solution whenever pos-
sible (i.e. when the low reference constraints, such as the jitter or the frequency drift, are
respected).

3.1 Mechanisms
Two mechanisms are proposed; the first one performs a simple clock division, whereas

the second one can also be used to generate a fractional clock.

3.1.1 Synchronous frequency divider
When the desired frequency is a whole division of the main clock frequency, a simple

clock divider can be used to generate an enable signal at the desired frequency. That
enable is then used as a synchronous input or a clock-gating enable by all the flip-flops
that need to run at the low frequency.

The exact mechanism consists of a counter modulo n clocked at the main frequency,
where n is the frequency ratio. It can be initialized to any value, zero is usually a good
choice. The enable is generated whenever the counter value is zero.

Ideally, the enable is used to synchronously enable the update of all the design flip-flops
that have to run at the low frequency. The the clock gating is added by Power Compiler.
Unfortunately, the current tool limitations may require a manual instantiation of the clock-
gating cell for optimal performance.

Figure 5 Timing diagram (divide by 5 example)

Figure 6 Enable generation Verilog code example
// counter declaration
parameter n = 2;
parameter divider = 5;
reg [n:0] count_reg;
// clock enable
wire clken = (count_reg == 0)? 1’b1 : 1’b0;
// counting
always @(posedge main_clk or negedge main_rst_b)

0 4 3 2 1 0 41

main_clk

count_reg

clken

clken_lat

low_clk

target
clock

SNUG Boston 2002 Page 13 Clock Management Tips
on a Multi-Clock Design

if (!main_rst_b)
count_reg <= 0;

else if (count_reg == 0)
count_reg <= divider - 1;

else
count_reg <= count_reg - 1;

Figure 7 Enable usage as synchronous input

Power Compiler builds the clock gating.
always @(posedge main_clk or negedge main_rst_b)

if (!main_rst_b)
<registers are reset here>

else if (clken)
<registers are updated here>

Figure 8 Enable usage via a clock-gating instance
wire low_clk;
clkgate low_clk_gen (

.clkin(main_clk),

.clken(clken),

.clkout(low_clk));
always @(posedge low_clk or negedge main_rst_b)

if (!main_rst_b)
<registers are reset here>

else
<registers are updated here>

3.1.2 Synchronous frequency fraction generator
When the main clock frequency is not an exact multiple of the desired low frequency,

there always exists a fraction that is close enough to the exact ratio. ‘Close enough’ means
the error between the fraction and the ratio is lesser than a predetermined limit. Any limit
can be chosen; there is always a solution since ℘ is dense in ℜ . See below “Structural
error due to the counter itself” on page 17 for the error calculation.

The fraction consists of a numerator and a denominator. The proposed solution works
with a single counter that is decremented by the numerator modulo the denominator every
cycle. Every time the counter wraps around its modulo value, the enable is activated.

The global frequency of the enable is exactly the fraction of the main clock frequency.
Its jitter is one main clock cycle. If the numerator is a divider of the denominator (usually
one since the fraction will be reduced), the system behaves like the divider and the enable
is generated whenever the counter reaches zero.

As already mentioned, the major drawback of that solution is the jitter, or the phase
error between the generated pseudo-clock and the ideal sub-frequency clock, which can be
up to one main clock cycle.

A timing diagram example and the Verilog model are given below.

SNUG Boston 2002 Page 14 Clock Management Tips
on a Multi-Clock Design

Figure 9 Timing diagram (multiply by 3/11 example)

Figure 10 Fraction generator Verilog model
// counter declaration
parameter n = 3;
parameter numerator = 3;
parameter denominator = 11;
reg [n:0] count_reg;
reg [n:0] count_next;
// clock enable
reg clken;
// counter update
always @(posedge main_clk or negedge main_rst_b)

if (!main_rst_b)
count_reg <= denominator - 1;

else
count_reg <= count_next;

// counting
always @(count_reg)

begin
clken = 0;
if (count_reg < numerator)

begin
count_next = count_reg + denominator - numerator;
clken = 1;
end

else
count_next = count_reg - numerator;

end

Although the jitter between two successive enables is always zero or one main clock
cycle, it is possible to adjust the phase error between the low frequency clock generated by
the system and an ideal low frequency clock with a known phase. Starting from zero, the
counter has a cyclic succession of values that goes through value zero periodically. It is
possible to determine the counter values that trigger the enable in such a way that the
phase error between the generated clock and the reference is always lesser than one half
the main clock cycle. This is shown in the following timing diagram.

8

main_clk

count_reg

clken

clken_lat

low_clk

5 2 10 7 4 1 9 6 3 0 8 5 2 10 7

SNUG Boston 2002 Page 15 Clock Management Tips
on a Multi-Clock Design

Figure 11 Timing diagram (multiply by 3/11 example with reduced phase error)

3.1.3 Dual edge-triggered synchronous frequency fraction generator
It is possible to halve the system jitter by using a dual phase system.
That solution is more complex and its advantages are less numerous; it should only be

considered when the single phase solution is not applicable. It is however a better choice
than having another PLL on-chip.

It consists of the same counter as the previous solutions, except it generates two differ-
ent enables; one to gate the main clock in order to generate the positive sub-clock and the
other to gate the inverted main clock in order to generate a negative sub-clock. Both sub-
clocks are then ORed together to yield the desired low reference clock. The principle is
described with the timing diagram and Verilog model below.

8

main_clk

count_reg

clken

clken_lat

low_clk

reference
clock

5 2 10 7 4 1 9 6 3 0 8 5 2 10 7

phase error

phase alignment

SNUG Boston 2002 Page 16 Clock Management Tips
on a Multi-Clock Design

Figure 12 Timing diagram (multiply by 3/11 for dual edge-triggered system)

Figure 13 Dual edge-triggered fraction generator Verilog model
// counter declaration
parameter n = 3;
parameter numerator = 3;
parameter denominator = 11;
reg [n:0] count_reg;
reg [n:0] count_next;
// clock enable
reg clkpos_en;
reg clkneg_en;
// counter update
always @(posedge main_clk or negedge main_rst_b)

if (!main_rst_b)
count_reg <= denominator - 1;

else
count_reg <= count_next;

// counting
always @(count_reg)

begin
clkpos_en = 0;
clkneg_en = 0;
if (count_reg < numerator)

begin
count_next = count_reg + denominator - numerator;
if (count_reg < numerator/2)

clkpos_en = 1;
end

else

8

main_clk

count_reg

clkpos_en

clkpos_lat

low_clkpos

5 2 10 7 4 1 9 6 3 0 8 5 2 10 7

clkneg_en

clkneg_lat

low_clkneg

low_clk

main_clk_b

SNUG Boston 2002 Page 17 Clock Management Tips
on a Multi-Clock Design

begin
count_next = count_reg - numerator;
if (count_reg >= denominator - (numerator+1)/2)

clkneg_en = 1;
end

end
// clock-gating cells
wire low_clkpos;
clkgate low_clkpos_gen (

.clkin(main_clk),

.clken(clkpos_en),

.clkout(low_clkpos));
wire low_clkneg;
clkgate low_clkneg_gen (

.clkin(~main_clk),

.clken(clkneg_en),

.clkout(low_clkneg));
wire low_clk = low_clkpos | low_clkneg;

The timing constraint for the logic that generates clkneg_en is one half the main
clock cycle whereas it is a full cycle for clkpos_en. Moreover, the datapaths between
the low frequency clock and the main clock are constrained to one half the main clock
cycle length. Finally, the low frequency clock is rather tricky and has a complex logic on
it, so clock tree synthesis as well as ATPG may prove to be difficult tasks.

3.2 Implementation requirements
The discussion is based on the positive edge-triggered fraction generator. The divider is

a particular case of the fraction. The dual edge-triggered system has the same limits as the
positive edge-triggered one running twice as fast.

3.2.1 Structural error due to the counter itself
For a desired clock ratio r and an m-bit counter, two cases occur:

• r ∈ ℘ , r reduced expression is n/d and d ≤ 2m; the structural frequency drift
fdstruct = 0 as the exact clock ratio can be generated;

• r ∉ ℘ , or d > 2m; the structural frequency drift fdstruct ≤ 2-(m+1) as the counter
granularity is 2-m so abs(“desired ratio” - “nearest possible ratio”) ≤ 2-(m+1).

Once the best clock ratio has been selected, its value can be expressed as n/d with
d ≤ 2m.

The jitter between two successive clock edges depends on n:

• if n ≠ 1, its value is sometimes 1, sometimes 0 main clock cycle (jstruct ∈
{0,1});

• if n = 1, which is the divider case, there is no jitter (jstruct = 0).

Jitter is by far the most limiting factor.
When considering the phase error between the generated clock and an ideal low fre-

quency reference, we have seen it can be brought to less than half the main clock cycle.

SNUG Boston 2002 Page 18 Clock Management Tips
on a Multi-Clock Design

3.2.2 Additional error due to the implementation limits
The minimal frequency for the main clock depends on the tolerance parameters for the

generated clock. Those parameters are either explicit from the specification document
when the low frequency clock itself is characterized, or they can be deduced from the con-
straints on the signals computed using that generated clock.

The resulting frequency drift and jitter depend on the structural error and on the main
reference clock characteristics:

• fdtot ≤ fdmain × fdstruct

• jtot ≤ jmain + jstruct + jlogic

where jlogic represents the maximal jitter due to the combinatorial logic that generates
the low frequency output signals. Since that parameter is implementation dependent (com-
binatorial structure and layout) and relatively small compared to the other two parameters,
it will be neglected in the following example.

3.2.3 Example
Let us calculate the minimal frequency of the main clock in several application cases.

The structural jitter is the only parameter that will be taken into account; since this is the
main system limitation, it allows a quick feasibility evaluation. Once the mechanism
structural jitter is proved to respect the system tolerance, a further calculation based on
refined parameters can be performed to draw the exact limitations of the mechanism.

• RS232 interface running at 28.8 kbauds, maximal distortion is 2%:
the character average duration is

chardur = 1/28,800 = 34.7 µs
and thus the maximal allowable structural jitter is

jstruct = 34.7 × 0.02 = 694.4 ns
which gives the minimal frequency of the main clock

fmain = 1.44 MHz

• RS232 interface running at 115.2 kbauds with a maximal distortion of 1%
gives, with a similar calculus:

fmain = 11.52 MHz

• Low speed USB interface running at 1.5 MHz with a maximal jitter of 10 ns:
the minimal frequency is thus

fmain = 100 MHz
which gets close to common peripheral frequencies; a dual edge-triggered
solution might be necessary; the frequency requirement could then drop to

fmain = 50 MHz
It is however possible to eliminate that issue by constraining the peripheral
frequency to be an exact multiple of 1.5 MHz which removes the structural jit-
ter.

• High speed USB interface running at 12 MHz with a maximal jitter of 1 ns:
the minimal frequency reaches 1 GHz or 500 MHz for the dual edge-triggered
solution, that are totally unacceptable running frequencies for peripherals. The

SNUG Boston 2002 Page 19 Clock Management Tips
on a Multi-Clock Design

only solution to avoid any synchronization issue in the peripheral is to have
the main frequency be a multiple of 12 MHz. Again, that constraint can be dif-
ficult to obtain and the module will require multiple clocks.

3.3 Pros & Cons
The advantages when using that type of mechanism are similar to those described in

“Low frequency clock reception” on page 2 plus a couple more:

• Design simplification (coding, verification, synthesis, static timing analysis,
clock tree synthesis, etc.).

• DFT-friendly solution.

• Synchronizer-free, since the whole design flip-flops receive gated clocks
derived from the exact same base.

Drawbacks are also similar:

• Tighter constrained synthesis because the whole design receives the same ref-
erence clock; it is however possible to use multi-cycle paths constraints when
timing is hard to meet, or when the impact on the design size cannot be disre-
garded.

• The system is not always able to provide an exact target frequency match.

• Jitter limits the range of applications to low frequency clocks or exact fre-
quency division of the main clock.

• Power consumption impact is more complex to evaluate; it is discussed in the
following section.

3.4 Power impact discussion
Power consumption comparison has to be considered for several aspects; some of them

depend entirely on the design particularities (floorplan, clock tree constraints like the
insertion delay, etc.) and thus need to be evaluated on a case basis to decide about the
applicability of the proposed synchronous mechanism.

3.4.1 Low frequency running logic
Power consumption for the logic running at the low frequency is equivalent regardless

of the system selection (low frequency clock or pseudo-clock generation with clock gat-
ing) as it was seen in “Low frequency clock reception” on page 2.

3.4.2 Clock tree
The pseudo-clock generation presents the advantage of a single clock routed between

the clock controller and the module, instead of several clocks. However, the power gain
mainly depends on the way clocks are gated on and off. When comparing the pseudo-
clock generation system with a single high frequency clock input and the classical system
with two clock inputs (the high frequency clock being a bus clock), several factors have to
be taken into account:

• The activity of the low frequency clock that is routed to the module and thus

SNUG Boston 2002 Page 20 Clock Management Tips
on a Multi-Clock Design

the average power consumption of its clock tree up to the module interface;
that parameter only accounts for the dual-clock implementation.

• The activity of the high frequency clock that is routed to the module; when
this is the peripheral bus clock, it is usually running according to the CPU
power modes or, if its clock gating is smarter, when the CPU accesses one of
the peripherals (so it is not necessarily the sole activity due to the peripheral
we are considering). That parameter accounts for both solutions.

• The additional activity of the high frequency clock when the pseudo-clock
generator is implemented in the module. That parameter only accounts for the
pseudo-clock generator solution. However, if the bus clock is usually running
when the module is working, there is little additional activity to be expected,
which makes the pseudo-clock generator the best choice.

Let us consider a simple example with a peripheral that receives a bus clock and also
needs a low frequency clock:

- the low frequency clock is running at 1 MHz and its clock tree consumes 1 µW/MHz;
- the bus clock is running at 90 MHz and the clock tree to the module consumes 5 µW/

MHz when it is active, which happens 100% of the time in the first case and 15% of the
time in the second case (smart clock management from the CPU).

In the first case, it is clear that the pseudo-clock generator solution brings a (very) little
power consumption improvement of 1 µW.

In the second case, the dual-clock solution consumed power is
P = 1 + 90×5×0.15 = 68.5 µW whereas it becomes P = 90×5 = 450 µW for the pseudo-
clock generation.

The degradation shown above also needs to be compared against the overall power con-
sumption of the module.

3.4.3 Low frequency generator
A test case evaluation is proposed below with variations of the counter width for the

pseudo-clock generator. In the case of a real clock generation, many different mechanisms
are possible with as many varying power consumptions: crystal, PLL with a frequency
divider, etc. Two dual-clock solutions using a clock divider from a 500 MHz PLL and
from a 40 MHz PLL are also evaluated.

The main clock frequency is 42.63 MHz; the low frequency clock target is 1 MHz. The
single clock solutions are implemented with both manual and Power Compiler automatic
clock gating.

Table 2: Clock fraction generator evaluation

design avg
(µW)

sleep
(µW)

idle
(µW)

run
(µW)

area
(gates)

dual-clock
(the reference) 5.86 4.47 6.35 6.76 751

SNUG Boston 2002 Page 21 Clock Management Tips
on a Multi-Clock Design

Sleep mode occurs when the main clock is shut off; in idle mode, clocks are running but
the module is not stimulated; and in run mode, the module is working.

The table clearly shows the impact of the counter size. There is an obvious tradeoff
between flexibility and accuracy on one side, area and power on the other side. The refer-
ence dual-clock design consumes far less power than single-clock solutions since it does
not include any frequency divider. In the usual case when the low frequency clock is gen-
erated from a PLL, a clock divider is used to provide the module with its low frequency
clock; two cases have been evaluated with the simple addition of a clock divider. The
500 MHz clock divider takes the direct output of the PLL while the 40 MHz clock divider
is equivalent to the single-clock mechanism. Those clock dividers are very low power
mechanisms optimized for one ratio and they do not respect clean synchronous design
methodologies (output of flip-flop used as clock of next one). The results show that opting
to single-clock solutions with reduced counter size stands comparison with other methods
for power, but those systems outperform for simplicity, backend, integration, DFT, etc.

4.0 Multiple high frequency clocks
When the strategies above cannot be applied because of unacceptable drawbacks (clock

ratio granularity, encapsulating IP with no resynthesis, too large frequency error, too much
jitter, etc.), the design needs several clocks running at different frequencies. That means
the use of synchronizers and more complex synthesis constraints.

Below is proposed a safe synchronizer design and synthesis tips to have the flow as
smooth as possible.

4.1 Synchronizers
We consider a source and a destination clock domain; the source sends a command with

data to the destination domain that sends an acknowledge back. The proposed mechanism
follows a set of guidelines to guarantee the design safety and reduce the performance pen-

dual-clock with 40 MHz
clock divider 12.64 5.10 16.20 16.61 878

dual-clock with 500 MHz
clock divider 96.67 14.80 137.4 137.8 939

single-clock
(8-bit counter) 17.38 4.26 12.08 35.81 948

single-clock
(12-bit counter) 26.56 4.26 15.77 59.65 1,173

single-clock
(16-bit counter) 37.54 4.26 20.02 88.34 1,412

Table 2: Clock fraction generator evaluation

design avg
(µW)

sleep
(µW)

idle
(µW)

run
(µW)

area
(gates)

SNUG Boston 2002 Page 22 Clock Management Tips
on a Multi-Clock Design

alty:

• There is one synchronized signal that serves as command enable; for a better
efficiency, its transition is the enable and both transitions are used.

• The command and data signals are frozen as soon as the enable is toggled and
until the acknowledge has been received from the destination domain; those
signals can thus be used in the destination clock domain as ordinary data.

• The destination domain detects the transition on the enable; it can use the
command and data information from the source domain the same way it uses
its own clock domain data.

• The destination domain acknowledges by toggling its acknowledge signal
which will release the frozen signals until the next transaction.

That type of mechanism works for all clock ratios; it also automatically adapts to vary-
ing clock ratios, which is an interesting property when clock frequencies are often modi-
fied.

Synchronizing packets of data can enhance throughput. The synchronization penalty is
only paid once per packet, which reduces the average penalty per data but costs more
hardware.

Figure 14 Synchronizer schematic

The s0 stages can be removed if it can be guaranteed the flip-flops will never go meta-
stable when their input changes during the capture window.

D Q

Q

D Q

Q

D Q

Q

clk1_sync_req

D Q

Q

1

s0 s1 s2

data

1 1

0

1
1

D Q

Q
data

1

0
2

clk2_locked

comb. w/

clk1

clk1 data

data

D Q

Q2

reqnew
req
pulse

DQ

Q

DQ

Q

DQ

Q 2

s0s1s2

22

DQ

Q 1

ack

clk2_sync_ack

clk2 data

SNUG Boston 2002 Page 23 Clock Management Tips
on a Multi-Clock Design

The principle of freezing source data allows complex transformations of those data
before storing the results in the destination clock domain.

Figure 15 Synchronization timing diagram

Figure 16 Synchronizer Verilog model
reg [n:0] clk1_D;
reg clk1_ack;
reg clk1_s0_req;
reg clk1_s1_req;
reg clk1_s2_req;
wire clk1_sync_req = (clk1_s2_req != clk1_s1_req)? 1 : 0;

reg [n:0] clk2_D;
reg clk2_req;
reg clk2_synchronizing;
reg clk2_s0_ack;
reg clk2_s1_ack;
reg clk2_s2_ack;
wire clk2_sync_ack = (clk2_s2_ack != clk2_s1_ack)? 1 : 0;
wire clk2_D_locked = clk2_synchronizing & ~clk2_sync_ack;

always @(posedge clk2 or negedge clk2_reset_b)
if (!clk2_reset_b)

<...>

D

clk2

clk1

req

s0_req

s1_req

s2_req

sync_req

locked

clk2_data

ack

clk1_data

s0_ack

s1_ack

s2_ack

sync_ack

D

SNUG Boston 2002 Page 24 Clock Management Tips
on a Multi-Clock Design

else
begin
// synchronizing clk1 acknowledge
clk2_s0_ack <= clk1_ack;
clk2_s1_ack <= clk2_s0_ack;
clk2_s2_ack <= clk2_s1_ack;
// unlocking clk2_D
if (clk2_sync_ack)

clk2_D_synchronizing <= 0;
// requiring synchronization
if (<...>)

begin
clk2_req <= ~clk2_req;
clk2_synchronizing <= 1;
end

// modification of clk2_D is only possible when
// no synchronization is ongoing
if (!clk2_D_locked)

clk2_D <= <...>;
end

always @(posedge clk1 or negedge clk1_reset_b)
if (!clk1_reset_b)

<...>
else

begin
// synchronizing clk2 side request
clk1_s0_req <= clk2_req;
clk1_s1_req <= clk1_s0_req;
clk1_s2_req <= clk1_s1_req;
// synchronizing registers and acknowledge
if (clk1_sync_req)

begin
clk1_D <= clk2_D;
clk1_ack <= ~clk1_ack;
end

// clk1_D can also be modified by a clk1 FSM
else if (<...>)

clk1_D <= <...>;
end

4.2 Design constraints
Design simplification includes synthesis constraint simplifications. Since several asyn-

chronous clocks cannot be avoided, the synthesis design constraints tend to get very com-
plex with many false paths. False paths may be hard to propagate at chip level when they
are numerous; they can hide violations and thus require dynamic timing verification
through backannotated gate-level simulations and its well-known coverage.

The simplest solution is to use the same fastest clock frequency for all clocks. That
obviously over constrains the design, but the size impact can be relatively negligible if the
fastest clock is the main clock of the module and all other slower clocks are only used in

SNUG Boston 2002 Page 25 Clock Management Tips
on a Multi-Clock Design

synchronizers. That assumption has been checked with two test cases:

It was pretty difficult to meet the 90 MHz target with design A and there was a lot of
logic running at slower frequency clocks, which led to a 7% area increase.

Design B resembles more the typical case when the tip is best applicable; one main
clock running at a high frequency and several interfaces at various frequencies that are
directly connected to synchronization mechanisms. Since there is very little logic in the
various clock domains except the main one, over constraining does not lead to a larger
design size (below 0.05% area increase).

That simple method, when applicable at low cost, presents the advantage of drastically
reducing the number of path groups, thus enhancing synthesis runtimes; it also simplifies
constraints, thus analysis and reduces the risk of false paths that would hide real viola-
tions. However, if the strategy is not applied at chip level, it may still be necessary to write
constraints with false paths. By over constraining the design, that method increases the
module area and may even cause false timing violations.

To avoid false paths, another possibility is to define all clocks as multiples of each other;
instead of defining 100 MHz, 90 MHz and 48 MHz, it is possible to define 100 MHz,
100 MHz and 50 MHz with no false paths. That over-constrains the design less than the
previous method, but several clocks are declared.

5.0 One clock issues
The final chapter is only dedicated to address a few issues in the definition of clocks for

synthesis. Those problems were encountered in some of our projects and the solutions we
found are described below.

5.1 Over constraining a design using both edges of the clock
To over-constrain a design through its clock definition, one usually reduces the cycle

time. That technique has a major drawback when both edges of the clock are used (clock-
gating latches, particular bus protocols, DDR interfaces, latch-based designs, etc.).

For example, a design target frequency is 10 ns, it is synthesized with a 9 ns cycle time

Table 3: Single-clock vs multi-clock synthesis constraints

design clocks false paths area

A

11
(90 → 10 MHz) 72 17,,009 gates

1
(90 MHz) 0 18,211 gates

B

3
(80, 75, 9 MHz) 9 127,416 gates

1
(80 MHz) 0 127,479 gates

SNUG Boston 2002 Page 26 Clock Management Tips
on a Multi-Clock Design

and the synthesis yields a violation of 0.75 ns; both clock edges are used and some paths
last half of the clock cycle (i.e. 5 ns target and 4.5 ns constraint). One of those paths has a
violation of 0.7 ns after synthesis and was left unoptimized since its violation is less than
the worst constraint violation. Unfortunately, once we switch back to the real cycle time
target, there is now a 0.2 ns violation due to that path.

The suggestion is to use the clock uncertainty parameter instead of the clock cycle defi-
nition when over constraining the design. By keeping a cycle time of 10 ns and adding
1 ns to the clock uncertainty, all the paths will see the same absolute additional constraint
and there won’t be any surprises when the original constraint is restored.

5.2 Multiple insertion delays
In the case of manually instantiated clock-gating cells or when late/early clocks are used

for synchronous hardmacros (hardIP, memories, etc.), there are multiple insertion delays
for the same frequency clock and special care need be taken for paths starting from one
insertion delay and finishing at another.

The problem arises when the insertion delay delta is not guaranteed as in the case of
clock-gating cells. Let us consider such an example:

The clock-gating cells are instantiated in the middle of the clock tree, which means their
latches receive an early clock compared to the clock used by the flip-flops to generate the
enable that goes to the latch. With standard synthesis constraints defined at the clock port,
the insertion delay seen by the clock-gating latches is equal to the insertion delay seen by
the other flip-flops. When the clock tree has been inserted, the clock-gating latches are
clocked earlier than the flip-flops that generate the enable, which means the enable has to
be stable earlier than synthesis determined. If the enable is fairly complex to generate (i.e.
with many levels of combinatorial logic), that can lead to large timing violations that are
identified very late in the design cycle.

The solution that was selected requires the definition of multiple clocks running at the
same frequency, but with different hook points and insertion delays:
create_clock -period $CLOCK_PER -name ROOT_CLK \

[get_ports “*_clk”]
set_clock_latency $INSERTION_DELAY [get_clocks {ROOT_CLK}]

create_clock -period $CLOCK_PER -name GATE_CLKOUT \
[get_pins -hierarchical “*_clk_gate/clkout”]

set_clock_latency $INSERTION_DELAY [get_clocks {GATE_CLKOUT}]

create_clock -period $CLOCK_PER -name GATE_CLKIN \
[get_pins -hierarchical “*_clk_gate/clkin”]

set_clock_latency 0 [get_clocks {GATE_CLKIN}]

The latches inside the clock-gating cells see a null insertion delay whereas the flip-flops
that generate the enable that goes to the latch see a normal insertion delay; that over con-
strains the enable since the insertion to the latch is guaranteed to be greater than zero. If
that constraint is too difficult to achieve, the zero value can be replaced by a larger value if
timing cannot be met. However, that non-null value becomes a constraint for Clock Tree
Synthesis since the clock-gating cell must receive a clock with more insertion delay than
the synthesis constraint.

SNUG Boston 2002 Page 27 Clock Management Tips
on a Multi-Clock Design

6.0 Conclusion
We have seen several simple mechanisms that can replace complex clocking schemes.

They can drastically reduce the design effort in timing analysis, DFT and back-end. Their
drawbacks have to be pondered with today’s design constraints; in deep sub-micron tech-
nology, logic is cheap but time-to-market and bug-free designs are much more challenging
than before. If some simplification helps you achieve those goals, do not be concerned too
much about slight area increases; you need your design on schedule and with all the fea-
tures.

Another reason why designs tend to use multiple clocks is the reuse. No designer wants
to risk modifying a module that already works, even if that creates a lot of trouble because
the module does not follow today’s rules (DFT, edge triggered flip-flops, etc.). So, the
chip design rules are adjusted and a lot of time is lost from integration to layout through
functional verification and DFT because several small modules are sometimes five to ten
years old.

Let us stop that. The only case when a designer should not use good synchronous design
practice is when there is a real technical improvement (latches for speed, asynchronicity
when drawbacks of synchronous systems are unacceptable, etc.), not because of reuse.
Reuse is meant to reduce time-to-market, not to cost weeks or even months of additional
work to integration, verification, backend and other teams.

Do not be afraid to rewrite completely old designs implemented with out-of-date tech-
niques. They can be replaced by friendly clocking schemes, positive edge-triggered flip-
flops, etc. There may be more time spent in solving issues due to old coding styles, than
redesigning the whole thing from scratch. It is always possible to reuse the testbench and
regression simulations to check the new design does not have more bugs than the old one.
And it’s more fun writing RTL than struggling with tools on a design you don’t understand
everything.

A last word about Power Compiler that helps to reduce power consumption of a design;
there still needs manual instantiation of clock-gating cells to achieve an optimal power
reduction since several levels of clock-gating cells are often needed. The numerous test
cases studied when writing this paper showed that getting the best clock-gating cell struc-
ture is not an easy task. This is a job for Power Compiler; find common factors in the
enables of registers, accept to have flip-flops with feedback loop and clock-gating cell,
group them to reach the minimal bank size limit, explore multiple solutions with several
levels of clock gating and determine the most efficient one.

7.0 Bibliography
Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs,

Clifford E. Cummings in SNUG San Jose 2001.

