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ABSTRACT

The ideal synthesizable design has only one clock and all its flip-flops are triggered on
its positive edge. That makes the whole flow alot easier, from synthesis to post-route tim-
ing analysis viaDFT stages. Unfortunately, that dream is usually far from reality; the
design uses both clock edges, has latches, several internal clocks, sometimes coming from
different PLLs, and even asynchronous inputs that need to be used as edge triggers.

The purpose of this paper isto give a set of mechanisms and synthesis tips that should
get the design as close as possible to the ideal case. The clock issues are progressively
introduced; asolution isalways proposed, either as a synthesizable positive edge-triggered
mechanism, or as a constraint tip, with its application requirements and its drawbacks.
Every proposition has already been used on area design case.
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1.0 Introduction

In current designs, multiple clocks are utilized. There are the clocks required to time
external interfaces, internal clocks generated from different phase-lock-loops, etc.

There are amany problems due to complex clocking schemes. Such as inadequate false
paths, some real paths are filtered out and thus not analyzed. The analysisitself becomes
very complex because the false path definitions did not remove all the false path viola-
tions. It may require case analysis and even dynamic timing analysis with functional pat-
terns to detect particular problems.

Moreover, thetiming analysis at chip level is conducted by designersthat have to merge
severa complex clocking schemes and analyze the modul e timings. Unfortunately they do
not have complete knowledge of all the designs and thus have a difficult task. To ease
design and integration, the best structure is one single clock and all the module registers
are triggered from the same edge (usually positive).

The question becomes how to achieve that best design structure and still meet all the
constraints that were solved by the presence of multiple clocks. To reach that goal or at
least approach it, this paper proposes a two-step process.

+ remove all the clock oddities,

« iffor the remaining clocks, provide tipsto facilitate synthesis and reduce the
negative impact of multiple clocks, asynchronous clocks or multiple clock
edge utilization.

Solutions are fully described, including a schematic, atiming diagram and Verilog code
sample; pros and cons are studied, with a special focus on power asit is often agood rea-
son for having multiple clocks within a design.

All the solutions assume the existence of arelatively high frequency clock in the mod-
ule, which is considered as the main clock in the following paragraphs.

2.0 Low frequency clock reception

Let usfirst consider amodule that receives alow frequency clock in addition to its high
frequency main clock. That low frequency clock is generated externally to the module and
serves as reference for input and/or output data. Thisistypically the case with serial and
parallel external interfaceslike UART and JTAG.

Thetypical implementation uses the input low frequency clock to drive afew flip-flop
clock pins, which requires a dedicated clock tree and multiple synchronization mecha-
nisms everywhere data goes from that clock domain to the main chip clock domain.

The related issues are numerous. having asynchronous clocks makes verification, syn-
thesis and timing analysis more complex, every additional clock requires a dedicated
effort to setup the design constraints and during clock-tree synthesis.

21 Doyou really need a clock?

To reduce the number of clocks, the first step consists in analyzing the functionality in
order to find a synchronous mechanism that will be equivalent.
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Sometimes, data signals are connected to flip-flop clock pinsto implement avery par-
ticular behavior. A typical exampleis the detection of an input signal variation when the
main clock of the module is gated off. Provided the signal toggle rate is low compared to
the main clock frequency, it is usually possible to implement a synchronous mechanism
that fits the need.

Below isan example that illustrates such a clock usage and proposes a ssimple mecha-
nism to perform the same function. The goal of that paragraph is smply to demonstrate
that it is sometimes possible to have a single clock solution and encourage designers to
spend enough time searching for that kind of solutions before considering adding another
clock to their module.

2.1.1 Problem description

The peripheral has to trigger an asynchronous wake-up command
(async_trigger_posedge) to the CPU upon reception of the rising transition of an input
signal (async_trigger). The wake-up command is cleared by the CPU by writing to a spe-
cific register that triggersthe clr_async trigger signal; that clearing is always performed
with the main clock running.

That mechanism has to work when the main clock is not running. The resulting com-
mand does not need to be synchronous and it cannot be as the reference clock is not
always available.

2.1.2 Former solution

The async_trigger_posedge signal is connected to a flip-flop clock pin which naturally
detectsitsrising edge regardless of the main clock status. The corresponding Verilog code
isavailable below:
reg async_trigger_posedge;
reg clr_async_trigger;
wire clr_async _trigger reset b = (~clr_async_trigger) & main_reset_b;

al ways @ posedge async_trigger or negedge clr_async_trigger_reset_b)
if (!clr_async_trigger_reset_b)
async_trigger_posedge <= 1’ bO0;
el se
async_trigger posedge <= 1'bl

al ways @ posedge nmai n_cl k or negedge mmi n_reset _b)
if (!'main_reset_b)
clr_async_trigger <= 1’ bO;
else if (clear_async_trigger)
clr_async_trigger <= 1'bl
else if (start_detecting _async_trigger)
clr_async_trigger <= 1’ bO;

2.1.3 New system

The exact functionality analysis shows that the system only goes to sleep once the
async_trigger input signal islow. That means detecting its rising edge is similar to detect-
ing when it is high. The proposition is to implement a small FSM (one flip-flop) the state
of which is combined with the incoming signal to generate the wake-up command. Before
going back to sleep, the system enables the propagation of the input signal high level to
the wake-up command. The following Verilog code implements that single-clocked solu-
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tion:

reg detecting;
W re async_trigger_posedge = (detecting == 1'b1)? async_trigger : 1 bO;

al ways @ posedge nmi n_cl k or negedge mmi n_reset _b)
if (!'main_reset_b)
detecting <= 1’ b0;
else if (clear_async_trigger)
detecting <= 1' bO;
else if (start_detecting _async_trigger)
detecting <= 1’ bil;
Simply by reconsidering the problem, it was possible to find a solution that does not
require the addition of a clock with all its inherent drawbacks.

2.2 Clock sampling mechanism

We have seen that it is possible to remove some unnecessary clocks. The example above
was a solution for avery particular case. What followsis awell-known general solution to
connect an external interface with alow frequency reference clock, to amodule that has a
high frequency clock at itsdisposal. Yet, that type of solution is not always used despite of
itssimplicity. We will determine its real limitations with a special interest in power con-
sumption that is a common argument against its usage.

The described system isimplemented with clock and data separate. However, the same
principles can be applied when clock and data are merged like in UARTS.

The incoming clock is sampled with the much faster main reference clock, which gener-
ates an enable when the desired clock edge is detected. Based on that enable, all inputs are
sampled and all outputs are generated. The computational logic should work based on that
enable to calculate the output data, which matches the interface throughput capability.
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Figurel Low frequency clock synchronizer
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Figure3 Verilog code

/1 inputs & outputs
i nput main_clk, main_rst_b, output_nmain;
out put i nput_mai n;
i nput low clk, input_Iow
out put out put _| ow,
/1 FFs declaration
reg syncl, sync2, sync3;
reg din, dout;
/1 low clk edges detection
Wi re posedge_enabl e _nmin
Wi re negedge_enabl e_nmin
/1 input & output
wire input_main = din;
wi re output_ | ow = dout;
/1 synchronization |ogic
al ways @ posedge nmai n_cl k or negedge mai n_rst_b)
if (!'main_rst_b)
begi n
syncl <= 0;
sync2 <= 0;
sync3 <= 0;
din <= 0;
dout <= O0;
end
el se
begi n
syncl <= | ow_cl k;
sync2 <= syncl;
sync3 <= syncz;
i f (posedge_enabl e_nmi n)
begi n
din <= input_I| ow
dout = output_main;
end

sync2 & !sync3;
Isync2 & sync3;

end

2.3  Implementation requirements

Thefirst sampling flip-flop (syncl) drastically reduces the risk of metastability propaga-
tion sinceits output has afull cycleto resolveto one or zero until it is sampled by the next
flip-flop (sync2). That system assumes the sampled signal edges are sharp enough to pre-
vent more than one metastability occurrence per edge because there would be difficulty
detecting several edges.

The first stage should be removed if it can be guaranteed the flip-flop outputs will not
become metastable if their D input changes during the capture window. That hel ps reduc-
ing the latency between the edge and its detection as an enable signal.

Another means to achieve better efficiency is the use of both clock edges for the syn-
chronizer: a negedge flip-flop for sync2 further reduces the detection latency. However,
that last possibility should be reserved to cases when the posedge solution cannot be used,
as using both edges negatively impacts the DFT, dual phase makes the design more com-
plex and the enable is only available less than a half-cycle before the next rising edge.

The minimum sampling frequency is determined by the hold time of the input datafrom
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the low clock reference edge and by the setup time required for the output data. The calcu-
lation for both constraintsis detailed below and an application example is also proposed.

2.3.1 Hold time constraint

The worst case equation assumes the low clock reference edge happens at the exact end
of the capture violation window and the sampling flip-flop state remains at the value
before the edge.

tHoLp > 3 x tmain * tph Hlgew T tht s
which becomes

tmain < (tHOLD - tph - tew - th- ts)/3
where t,n isthe main clock maximal cycle duration, ty, is the main clock maximal
phase shift between two successive cycles, tyq, IS the clock tree maximal skew, ty, and tg
are respectively the hold time of din and the setup time of syncl.

Figure4 t,o p calculation
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If the library flip-flop outputs cannot become metastable, the removal of syncl trans-
lates into the following equation:

tmain < (tHOLD - tph ~tgew - th- ts)/z
And using negative edge-triggered flip-flop for sync2 respectively gives
tmain < (tHOLD - tph ~toew - th- ts)/2-5
when syncl is kept and
tmain < (tHOLD - tph ~toew - th- ts)/1-5
when syncl is removed.

Asfar astheinput datais setup before the reference edge of its clock, it does not gener-
ate any particular constraint to the system. If thisis not the case, there is a maximum sam-
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pling frequency. It is however very easy to adapt the system by delaying the sampling.
2.3.2 Setup time constraint

The sametype of calculation is performed to determine the frequency constraint derived
from the required setup time of output data.

tseTup < tiow - tphlow -3x tmain - tskew = Is - tck2q
which becomes

tmain < (tlow - tphlow - tseTup - tokew - Bs - tck2q)/ 3
wheret)q,, isthelow clock minimal cycle duration, typ oy isthe low clock maximal
phase shift between two successive cycles, t,4n, iSthe main clock maximal cycle duration,
tscew 1S the clock tree maximal skew, ty.oq and ts are respectively the clock-to-Q delay of
dout and the setup time of syncl.

If the library flip-flop outputs cannot become metastable, the removal of syncl trans-
lates into the following equation:

tmain < (tlow - tphlow - tseTUP - tskew - Bs - tck2q)/ 2
The output data hold constraint can create a maximum sampling frequency constraint if
itisnot null; it is easy to solve that issue by further delaying the dout update.

2.3.3 Example

Let usconsider a JTAG interface with a20 MHz TCK (50 ns cycle), 0.5% frequency
drift, 1% phase shift, 10 ns setup required for TDO, and 40 ns hold for TDI and TMS.

The flip-flops have the following characteristics: tp, = 0.1 ns, ts= 0.4 ns, tyoq = 0.6 ns.

The sampling clock worst case parameters are 0.5 ns skew, 0.5% phase shift and 0.3%
frequency drift. We are looking for its maximal cycle delay tyain-

» thetyop constraint gives:
40> (3 + 0.5/100) * tygn + 0.4+ 0.1+ 0.5
tmain < 39.0/3.005
tmain < 12.98 ns

» and the tgeTyp CONstraint:
50 x 0.995 — 50x 1/100 - 0.4 - 0.6 — (3 + 0.5/1080},,5in - 0.5> 10
tmain < 12.56 ns

 taking the tighter constraint and considering the frequency drift:
train < 12.56/(1 + 0.3/100)
train < 12.52 ns (79.8 MHz minimum)

So, the main frequency clock must be about 80 MHz to safely oversample the JTAG
TCK. If theflip-flop outputs do not become metastable and syncl flip-flop is removed, the
sampling frequency dropsto 54 MHz.

If sync2 isimplemented as a negative edge-triggered flip-flop, the main clock frequency
limits respectively become 67 MHz and 40 MHz.

24  Pros& Cons
Why isit so interesting to use that mechanism?
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» That solution is safe, provided the sampling frequency constraints are met,
which is easily determined by calculation as it was shown above.

» Thedesign is simplified, which impacts all the stages; coding, verification,
synthesis, timing analysis (dynamic analysisis no more necessary), layout and
especially clock tree synthesis. It is merely impossible to find a smpler solu-
tion with the same level of safety; as soon as you introduce a new clock
domain in adesign, there needs a synchronization mechanism somewhere.
The proposed solution has only one in the simplest form; there cannot be less.

» DFT compliancy is preserved. Thereis no need for additional logic to circum-
vent multiple clock issues, which tends to add complexity and areato the
design. And over 99.5% of fault coverage can be achieved, which is a pipe-
dream when you have to rely on functiona patterns because some sections
could not be easily made testable.

But there are limitations and drawbacks:

» Thereis not complete freedom in the clock ratio: the sampling clock fre-
guency is constrained, thus preventing the use of that system in all cases.

» Synthesisis performed with tighter constraints; that causes an increase of the
module area; it may be sometimes difficult to meet the timing goal and multi-
cycle paths constraints should be considered. The areaimpact is further evalu-
ated in the following paragraph.

» Power consumption? Thisis the most common objection to the principle of
synchronizing the input clock asif it were data. As soon as you assume there
isasynchronizer somewhere in the design, that part of the mechanism
requires the same amount of power regardless of its location; the rest of the
design takes advantage of existing clock-gating techniques to reduce power
consumption to about the same level as systemsthat use the incoming clock as
aclock. That assumption is aso studied in the next paragraph.

25  Power and area impact

The study was performed on two designs. Several variations of the designs have gone
through power conscious synthesis and power analysis using Design Compiler and Power
Compiler.

The exact flow was taken from the Power Compiler user guide:
* RTL smulation to generate RTL activity file.
* Preliminary synthesis with clock gating insertion.

* Incremental compile with power optimization using backannotated RTL activ-
ity.
» Gate-Level simulation to generate post-synthesis activity file.

* Power analysis of backannotated GL activity. It was done for three running
modes; in ‘sdeep’ mode, there is no toggle on any low frequency input pin

SNUG Boston 2002 Page 9 Clock Management Tips
on aMulti-Clock Design



including the clock; in ‘idle’ mode, the low frequency clock isrunning but the
inputs are left idle; in ‘run’ mode, the system is stimulated by its low fre-
guency inputs.

The design variations that went through the flow:

Dual-clock design with minimized synchronization. Thefirst clock isthe
input low frequency reference, the second clock isthe main chip clock. There
isasingle synchronizer in the module. That design istaken asthe referencein
terms of power consumption.

Dual-clock design with large synchronization. It is the same as above except
several synchronizers are instantiated; the objective was ssimply to measure
the impact on power when synchronizers are multiplied, asit is not guaranteed
that a single synchronizer dual-clock solution is always achievable.

Single-clock design with Power Compiler automatic clock gating.

Single-clock design with two levels of clock gating; the first level was instan-
tiated in the Verilog code, using the enable generated from the low frequency
clock positive edge detection to gate the whole design logic except the syn-
chronizer itself (the Verilog code was thus different from what is proposed in
“Clock sampling mechanism” on page 4). The second level was automatically
generated by Power Compiler.

It isimportant to understand that inserting clock gating makes the Gate-L evel structure
of the synchronization mechanism sightly different from what is presented in “ Clock
sampling mechanism” on page 4. The synchronizer and edge detection remain unchanged,
but din and dout registers receive a clock gated by the enable generated from the synchro-
nizer and the multiplexer at their input is removed. Power Compiler should automatically

perform that modification.

Table 1: Power and area impact study of low frequency clock synchronization

design avg sleep idle run area

(W) | (W) | (W) | (W) | (gates)
dual-clock (1 sync.) 19.55 13.94 15.56 23.35 639
dual-clock (5 sync.) 35.91 30.19 31.81 39.80 710
A single-clock (1 level) 39.04 28.82 33.17 41.87 723
single-clock (2 levels) 19.61 13.90 15.52 23.59 646
dual-clock (1 sync.) 12.51 10.14 13.59 13.81 729
dual-clock (3 sync.) 12.63 10.20 13.65 14.06 762
5 single-clock (1 level) 26.13 23.75 27.20 27.43 731
single-clock (2 levels)? | 12.46 10.00 13.57 13.80 1724
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a. Manualy instantiated clock-gating cells had to be put in a module wrapper
because Power Compiler was unable to understand the cell logic when there was
aready clock-gating logic and thus refused to add another level of clock gates.

The major issue when designing the dual-clock solution was the capture of data clocked
at the main frequency; it required a synchronized hand-shaking mechanism. As soon as
several such synchronizers are used, not surprisingly, the power consumption increases
significantly. It isinteresting to notice that three synchronizers were necessary for func-
tional safety in design B; the single synchronizer solution was only implemented for
power comparison purpose. However, both additional synchronizers are clocked at the
low frequency, so they have very little impact on the power consumption.

The single-clock solution, which only relies on Power Compiler for the clock gating,
clearly shows the limits of thetool. Asit is only able to generate one level of clock-gating
cells, the enables are combined together to give a specific clock enable for every register
bank (the size limit was set to eight). That logic toggles frequently, which costs power.
Such a solution cannot compete for power or areawith the dual-clock solution, even when
the dual-clock solution uses multiple synchronizers.

Since Power Compiler is unable to manage several levels of clock gating, afirst level is
manually instantiated in a separate wrapper (see footnote afrom table 1); it takes the
enabl e active when the low-frequency-clock edge was detected to gate off all the flip-flops
of the design. That makes it become similar to the dual-clock version with one synchro-
nizer; the synchronizer is shifted at the low frequency clock port, one clock-gating cell
drivestherest of the design and its enable is active when the low frequency clock rising
edge is detected; which means all the design registers, except the synchronizer, receive the
exact same amount of clock edges as the registersin the dual-clock version. The single-
clock power consumption and area are thus similar to those achieved by the dual-clock
with one synchronizer. The layout and clock tree impact was not evaluated; a priori, it can
favor any solution. The DFT hardware cost was not considered either, but the dual-clock
solution is necessarily more complex, thus requiring more DFT logic than the single-clock
solution (e.g. clock muxes, €tc.).

3.0 Low frequency clock generation

After considering the case when the design receives data and its reference clock, let us
focus on the case when the low frequency reference is generated internally and does not
need to be output. Typical examples are SSI, USB, etc.

The clock generators are often directly derived from the main reference clock PLL and
sometimes from another PLL, using clock dividers. That creates several asynchronous
clocks within the design. The drawbacks are similar to those listed in the previous para-
graph; asynchronous clocks make verification, synthesis and timing analysis more com-
plex; every additional clock requires specific design constraints and clock-tree synthesis;
testability islower because of the ATPG limitations.

It will sometimes be possible to implement a synchronous mechanism that yields the
desired low frequency reference from the main clock. All the previous drawbacks are
removed, but that kind of solution hasits own limitations that will be analyzed. The kind
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of synchronous mechanism proposed bel ow should be the selected solution whenever pos-
sible (i.e. when the low reference constraints, such asthe jitter or the frequency drift, are
respected).

3.1 Mechanisms

Two mechanisms are proposed; the first one performs a simple clock division, whereas
the second one can also be used to generate a fractional clock.

3.1.1 Synchronous frequency divider

When the desired frequency is awhole division of the main clock frequency, asimple
clock divider can be used to generate an enable signal at the desired frequency. That
enable is then used as a synchronous input or a clock-gating enable by all the flip-flops
that need to run at the low frequency.

The exact mechanism consists of a counter modulo n clocked at the main frequency,
where n is the frequency ratio. It can be initialized to any value, zero is usually agood
choice. The enable is generated whenever the counter value is zero.

|deally, the enable is used to synchronously enable the update of all the design flip-flops
that have to run at the low frequency. The the clock gating is added by Power Compiler.
Unfortunately, the current tool limitations may require a manual instantiation of the clock-
gating cell for optimal performance.

Figure5 Timing diagram (divide by 5 example)
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Figure6 Enablegeneration Verilog code example

[/ counter declaration

paranmeter n = 2;

par amet er divider = 5;

reg [n:0] count_reg;

/1 clock enable

wire clken = (count _reg == 0)? 1'bl : 1’ bO;

/1 counting

al ways @ posedge nmai n_cl k or negedge mai n_rst_b)
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if (!'main_rst_b)

count _reg <= 0;
else if (count_reg == 0)

count _reg <= divider - 1;
el se

count _reg <= count_reg - 1;

Figure7 Enable usage as synchronousinput

Power Compiler builds the clock gating.

al ways @ posedge nmai n_cl k or negedge nmin_rst_b)
if (!'main_rst_b)
<registers are reset here>
else if (clken)
<regi sters are updated here>

Figure8 Enable usage via a clock-gating instance

wire | ow clk;
cl kgate low cl k_gen (
.clkin(main_cl k),
. cl ken(cl ken),
.cl kout (1 ow_cl k));
al ways @ posedge | ow cl k or negedge main_rst_b)
if (!'main_rst_b)
<registers are reset here>
el se
<regi sters are updated here>

3.1.2 Synchronous frequency fraction generator

When the main clock frequency is not an exact multiple of the desired low frequency,
there always exists afraction that is close enough to the exact ratio.  Close enough’ means
the error between the fraction and the ratio is lesser than a predetermined limit. Any limit
can be chosen; thereis always a solution since [1 isdensein [J. See below “ Structural
error due to the counter itself” on page 17 for the error calculation.

The fraction consists of a numerator and a denominator. The proposed solution works
with asingle counter that is decremented by the numerator modul o the denominator every
cycle. Every time the counter wraps around its modulo value, the enable is activated.

The global frequency of the enable is exactly the fraction of the main clock frequency.
Itsjitter is one main clock cycle. If the numerator is adivider of the denominator (usually
one since the fraction will be reduced), the system behaves like the divider and the enable
is generated whenever the counter reaches zero.

As aready mentioned, the major drawback of that solution is the jitter, or the phase
error between the generated pseudo-clock and the ideal sub-frequency clock, which can be
up to one main clock cycle.

A timing diagram example and the Verilog model are given below.
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Figure9 Timing diagram (multiply by 3/11 example)
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Figure10 Fraction generator Verilog model

/1 counter declaration
paranmeter n = 3;
par anet er nunerator = 3;
par anet er denomi nator = 11;
reg [n: 0] count_reg;
reg [n:0] count_next;
/1 clock enable
reg cl ken;
/1 counter update
al ways @ posedge nmai n_cl k or negedge nmin_rst_b)
if (!'main_rst_b)
count _reg <= denom nator - 1;
el se
count _reg <= count _next;
/1 counting
al ways @ count _reg)
begi n
cl ken = 0;
if (count_reg < nunerator)
begi n
count _next = count_reg + denom nator - nunerator;
cl ken = 1;
end
el se
count_next = count_reg - nunerator;

end

Although the jitter between two successive enablesis always zero or one main clock
cycle, it ispossible to adjust the phase error between the low frequency clock generated by
the system and an ideal low frequency clock with a known phase. Starting from zero, the
counter has a cyclic succession of values that goes through value zero periodically. It is
possible to determine the counter values that trigger the enable in such away that the
phase error between the generated clock and the reference is always lesser than one half
the main clock cycle. Thisisshown in the following timing diagram.
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Figure11l Timing diagram (multiply by 3/11 example with reduced phase error)
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3.1.3 Dual edge-triggered synchronous frequency fraction generator
It is possible to halve the system jitter by using a dual phase system.

That solution is more complex and its advantages are less numerous; it should only be
considered when the single phase solution is not applicable. It is however a better choice
than having another PLL on-chip.

It consists of the same counter as the previous solutions, except it generates two differ-
ent enables; one to gate the main clock in order to generate the positive sub-clock and the
other to gate the inverted main clock in order to generate a negative sub-clock. Both sub-
clocks are then ORed together to yield the desired low reference clock. The principleis
described with the timing diagram and Verilog model below.
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Figure12 Timing diagram (multiply by 3/11 for dual edge-triggered system)
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Figure 13 Dual edge-triggered fraction generator Verilog model

/1 counter declaration

paranmeter n = 3;

par anet er nunerator =
par amet er denoni nat or
reg [n: 0] count_reg;

reg [n: 0] count_next;

/1 clock enable
reg cl kpos_en;
reg cl kneg_en;

/1 counter update

al ways @ posedge nmai n_cl k or negedge nmin_rst_b)

if (!'main_rst_b)
count _reg <= denom nator - 1;

el se

count _reg <= count_next;

/1 counting

al ways @ count _reg)

begi n

cl kpos_en = 0;

cl kneg_en = 0;

if (count_r
begi n

count _next
if (count _reg < nunerator/2)
cl kpos_en = 1;

end
el se

SNUG Boston 2002
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begi n
count _next = count_reg - nunerator;
if (count_reg >= denomi nator - (nunerator+1)/2)
cl kneg_en = 1;
end
end
/'l clock-gating cells
wire | ow _cl kpos;
cl kgate | ow cl kpos_gen (
.clkin(main_cl k),
. cl ken(cl kpos_en),
. cl kout (1 ow_cl kpos));
wire | ow _cl kneg;
cl kgate | ow cl kneg_gen (
.clkin(~mai n_cl k),
. cl ken(cl kneg_en),
. cl kout (1 ow_cl kneg) ) ;
wire low clk = low.clkpos | |ow clkneg;

The timing constraint for the logic that generatescl kneg_en isone half the main
clock cyclewhereasit isafull cyclefor cl kpos_en. Moreover, the datapaths between
the low frequency clock and the main clock are constrained to one half the main clock
cycle length. Finally, the low frequency clock israther tricky and has a complex logic on
it, so clock tree synthesis as well as ATPG may prove to be difficult tasks.

3.2  Implementation requirements

The discussion is based on the positive edge-triggered fraction generator. The divider is
aparticular case of the fraction. The dual edge-triggered system has the same limits as the
positive edge-triggered one running twice as fast.

3.2.1 Sructural error dueto the counter itself
For adesired clock ratio r and an m-bit counter, two cases occur:

« rO0, rreduced expression isn/d and d < 2™ the structural frequency drift
fdgruct = O as the exact clock ratio can be generated;

« rO0,ord>2™ thestructural frequency drift fdg,, < 2" (™ asthe counter
granularity is 2™ so abs(“ desired ratio” - “nearest possible ratio”) < 2/ (M1,

Once the best clock ratio has been selected, its value can be expressed as n/d with
d<2m

The jitter between two successive clock edges depends on n:

* if n#1,itsvaueissometimes 1, sometimes 0 main clock cycle (jgyyet U
{0.1});
* if n=1, whichisthedivider case, thereis nojitter (jgy et = 0)-
Jitter is by far the most limiting factor.

When considering the phase error between the generated clock and an ideal low fre-
guency reference, we have seen it can be brought to less than half the main clock cycle.
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3.2.2 Additional error due to the implementation limits

The minimal frequency for the main clock depends on the tolerance parameters for the
generated clock. Those parameters are either explicit from the specification document
when the low frequency clock itself is characterized, or they can be deduced from the con-
straints on the signals computed using that generated clock.

The resulting frequency drift and jitter depend on the structural error and on the main
reference clock characteristics:

* ot < fdmain % fdsryct

* Jtot <Imain *lstruct jlogic
where jjogic represents the maximal jitter due to the combinatorial logic that generates
the low frequency output signals. Since that parameter isimplementation dependent (com-

binatorial structure and layout) and relatively small compared to the other two parameters,
it will be neglected in the following example.

3.2.3 Example

Let us calculate the minimal frequency of the main clock in several application cases.
The structural jitter isthe only parameter that will be taken into account; since thisisthe
main system limitation, it allows a quick feasibility evaluation. Once the mechanism
structural jitter is proved to respect the system tolerance, afurther calculation based on
refined parameters can be performed to draw the exact limitations of the mechanism.

* RS232 interface running at 28.8 kbauds, maximal distortion is 2%:
the character average duration is
charg,, = /28,800 = 34.7 ps
and thus the maximal allowable structural jitter is
Jstruct = 34.7 X 0.02 = 694.4 ns
which gives the minimal frequency of the main clock
fmain = 1.44 MHz

» RS232 interface running at 115.2 kbauds with a maximal distortion of 1%
gives, with asimilar calculus:
fmain = 11.52 MHz

* Low speed USB interface running at 1.5 MHz with a maximal jitter of 10 ns:
the minimal frequency isthus
fmain = 100 MHz
which gets close to common peripheral frequencies, adua edge-triggered
solution might be necessary; the frequency requirement could then drop to
fmain = 50 MHz
It is however possible to eliminate that issue by constraining the peripheral
frequency to be an exact multiple of 1.5 MHz which removesthe structural jit-
ter.

* High speed USB interface running at 12 MHz with a maximal jitter of 1 ns:
the minimal frequency reaches 1 GHz or 500 MHz for the dual edge-triggered
solution, that aretotally unacceptabl e running frequenciesfor peripherals. The
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only solution to avoid any synchronization issue in the peripheral isto have
the main frequency be amultiple of 12 MHz. Again, that constraint can be dif-
ficult to obtain and the module will require multiple clocks.

3.3 Pros & Cons

The advantages when using that type of mechanism are similar to those described in
“Low frequency clock reception” on page 2 plus a couple more:

» Design simplification (coding, verification, synthesis, static timing analysis,
clock tree synthesis, etc.).

» DFT-friendly solution.

» Synchronizer-free, since the whole design flip-flops receive gated clocks
derived from the exact same base.

Drawbacks are also similar:

» Tighter constrained synthesis because the whole design receives the same ref-
erence clock; it is however possible to use multi-cycle paths constraints when
timing is hard to meet, or when the impact on the design size cannot be disre-
garded.

» The system is not always able to provide an exact target frequency match.

 Jitter limits the range of applicationsto low frequency clocks or exact fre-
guency division of the main clock.

» Power consumption impact is more complex to evaluate; it is discussed in the
following section.

34  Power impact discussion

Power consumption comparison has to be considered for severa aspects; some of them
depend entirely on the design particularities (floorplan, clock tree constraints like the
insertion delay, etc.) and thus need to be evaluated on a case basis to decide about the
applicability of the proposed synchronous mechanism.

3.4.1 Low frequency running logic

Power consumption for the logic running at the low frequency is equivalent regardless
of the system selection (low frequency clock or pseudo-clock generation with clock gat-
ing) asit was seen in “Low frequency clock reception” on page 2.

3.4.2 Clocktree

The pseudo-clock generation presents the advantage of a single clock routed between
the clock controller and the module, instead of several clocks. However, the power gain
mainly depends on the way clocks are gated on and off. When comparing the pseudo-
clock generation system with a single high frequency clock input and the classical system
with two clock inputs (the high frequency clock being a bus clock), several factors haveto
be taken into account:

» Theactivity of the low frequency clock that is routed to the module and thus
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the average power consumption of its clock tree up to the module interface;
that parameter only accounts for the dual-clock implementation.

» Theactivity of the high frequency clock that is routed to the module; when
thisisthe peripheral bus clock, it is usually running according to the CPU
power modes o, if its clock gating is smarter, when the CPU accesses one of
the peripherals (so it is not necessarily the sole activity due to the peripheral
we are considering). That parameter accounts for both solutions.

» The additional activity of the high frequency clock when the pseudo-clock
generator isimplemented in the module. That parameter only accounts for the
pseudo-clock generator solution. However, if the bus clock isusually running
when the module is working, there islittle additional activity to be expected,
which makes the pseudo-clock generator the best choice.

Let us consider a simple example with a peripheral that receives abus clock and also
needs alow frequency clock:

- the low frequency clock isrunning at 1 MHz and its clock tree consumes 1 pW/MHz;

- the bus clock is running at 90 MHz and the clock tree to the module consumes 5 pwW/
MHz when it is active, which happens 100% of the time in the first case and 15% of the
time in the second case (smart clock management from the CPU).

Inthefirst case, it is clear that the pseudo-clock generator solution brings a (very) little
power consumption improvement of 1 pW.

In the second case, the dual-clock solution consumed power is
P =1+ 90x5x0.15 = 68.5 yW whereas it becomes P = 90x5 = 450 uW for the pseudo-
clock generation.

The degradation shown above also needs to be compared against the overall power con-
sumption of the module.

3.4.3 Low frequency generator

A test case evaluation is proposed below with variations of the counter width for the
pseudo-clock generator. In the case of areal clock generation, many different mechanisms
are possible with as many varying power consumptions: crystal, PLL with a frequency
divider, etc. Two dual-clock solutions using a clock divider from a 500 MHz PLL and
from a40 MHz PLL are also evaluated.

The main clock frequency is 42.63 MHz; the low frequency clock target is1 MHz. The
single clock solutions are implemented with both manual and Power Compiler automatic
clock gating.

Table 2: Clock fraction generator evaluation

design avg sleep idle run area
(HW) (HW) (HW) (HW) (gates)
(tr?:?le-fgr(;ie) 5.86 4.47 6.35 6.76 751
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Table 2: Clock fraction generator evaluation

design avg sleep idle run area
(LW) (LW) (UW) (UW) | (gates)
dual-clock w!th 40 MHz 1264 510 16.20 16,61 o7g
clock divider
dual-clock W|.th.500 MHz 96.67 1A.80 1374 1378 055
clock divider
single-clock
(8-bit counter) 17.38 4.26 12.08 35.81 948
single-clock
single-clock
(16-bit counter) 37.54 4.26 20.02 88.34 1,412

Sleep mode occurs when the main clock is shut off; in idle mode, clocks are running but
the module is not stimulated; and in run mode, the module is working.

Thetable clearly shows the impact of the counter size. There is an obvious tradeoff
between flexibility and accuracy on one side, area and power on the other side. The refer-
ence dual-clock design consumes far less power than single-clock solutions since it does
not include any frequency divider. In the usual case when the low frequency clock is gen-
erated from aPLL, aclock divider is used to provide the module with its low frequency
clock; two cases have been evaluated with the ssmple addition of a clock divider. The
500 MHz clock divider takesthe direct output of the PLL while the 40 MHz clock divider
is equivalent to the single-clock mechanism. Those clock dividers are very low power
mechanisms optimized for one ratio and they do not respect clean synchronous design
methodologies (output of flip-flop used as clock of next one). The results show that opting
to single-clock solutions with reduced counter size stands comparison with other methods
for power, but those systems outperform for simplicity, backend, integration, DFT, etc.

4.0 Multiple high frequency clocks

When the strategies above cannot be applied because of unacceptable drawbacks (clock
ratio granularity, encapsulating | P with no resynthesis, too large frequency error, too much
jitter, etc.), the design needs severa clocks running at different frequencies. That means
the use of synchronizers and more complex synthesis constraints.

Below is proposed a safe synchronizer design and synthesistips to have the flow as
smooth as possible.

4.1  Synchronizers

We consider a source and a destination clock domain; the source sends a command with
datato the destination domain that sends an acknowledge back. The proposed mechanism
follows a set of guidelines to guarantee the design safety and reduce the performance pen-
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aty:

» Thereisone synchronized signal that serves as command enable; for a better
efficiency, itstransition is the enable and both transitions are used.

» The command and data signals are frozen as soon as the enable istoggled and
until the acknowledge has been received from the destination domain; those
signals can thus be used in the destination clock domain as ordinary data.

* The destination domain detects the transition on the enable; it can use the
command and data information from the source domain the same way it uses
its own clock domain data.

» The destination domain acknowledges by toggling its acknowledge signal
which will release the frozen signals until the next transaction.

That type of mechanism works for all clock ratios; it also automatically adaptsto vary-
ing clock ratios, which is an interesting property when clock frequencies are often modi-
fied.

Synchronizing packets of data can enhance throughput. The synchronization penalty is
only paid once per packet, which reduces the average penalty per data but costs more
hardware.

Figure14 Synchronizer schematic

\>_D Q D Q D Q D Q cl k1_sync_req
p:‘é{" ‘ req s0 s1 s2 Dﬁ
pul se 2> epP- 1> QL- 14> QO 14> Q0
cl k2_sync_ack
.
s2 sl sO ack
—0
D Q—
comb. w\ | |1||data
cl k1l data 1 Q0D
cl k2 data
2 QP »
cl k2 I ocked cciaté

The S0 stages can be removed if it can be guaranteed the flip-flops will never go meta-
stable when their input changes during the capture window.
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The principle of freezing source data allows complex transformations of those data
before storing the results in the destination clock domain.

Figure15 Synchronization timing diagram

cl k2

s0_ack

sl ack

s2_ack

sync_ack

cl k1

s0_req

sl req

s2_req

sync_req

ack

cl kl_data

Figure16 Synchronizer Verilog model
reg [n:0] clkl_D

reg cl k1_ack;

reg cl k1l _sO_req;

reg clkl sl req

reg cl k1l _s2 req;

wre clkl_sync_req = (clkl s2 req !'=clkl sl req)? 1 : O;
reg [n:0] clk2_D

reg cl k2_req;

reg cl k2_synchroni zi ng;

reg cl k2_s0_ack;

reg cl k2 _s1 ack;

reg cl k2 _s2 ack;

wre cl k2_sync_ack = (clk2_s2 ack !'= clk2_s1 ack)? 1 : O;
wre cl k2_D | ocked = cl k2_synchroni zing & ~cl k2_sync_ack

al ways @ posedge cl k2 or negedge cl k2 _reset _b)
if (!clk2_reset_b)
<...>
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el se
begi n
/'l synchronizing cl kl acknow edge
cl k2 _s0 _ack <= clkl _ack
cl k2 _s1 _ack <= cl k2 _s0 ack
cl k2 s2 ack <= cl k2 _s1 ack
/1 unl ocking clk2 D
if (clk2_sync_ack)
cl k2_D synchroni zing <= 0
/1 requiring synchronization
if (<...>)
begi n
cl k2 _req <= ~cl k2_req;
cl k2_synchronizing <= 1
end
/1 nodification of clk2_Dis only possible when
/1 no synchronization i s ongoing
if (!clk2_D | ocked)
clk2 D <= <...>;
end

al ways @ posedge cl kl or negedge clkl reset _b)
if (!clkl reset_b)
<...>
el se
begi n
/1 synchronizing cl k2 side request
clkl sO req <= clk2 req;
clkl sl req <= clkl_s0_req;
clkl s2 req <= clkl_sl1 req;
/1 synchronizing registers and acknow edge
if (clkl_sync_req)
begi n
cl kil _D <= cl k2_D;
cl k1l ack <= ~cl k1_ack;
end
/1 clkl D can also be nmodified by a cl kl FSM
else if (<...>)
clkl D<= <...>;
end

4.2  Design constraints

Design simplification includes synthesis constraint simplifications. Since several asyn-
chronous clocks cannot be avoided, the synthesis design constraints tend to get very com-
plex with many false paths. False paths may be hard to propagate at chip level when they
are numerous; they can hide violations and thus require dynamic timing verification
through backannotated gate-level simulations and its well-known coverage.

The ssimplest solution isto use the same fastest clock frequency for all clocks. That
obviously over constrains the design, but the size impact can be relatively negligibleif the
fastest clock isthe main clock of the module and all other ower clocks are only used in
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synchronizers. That assumption has been checked with two test cases:

Table 3: Single-clock vs multi-clock synthesis constraints

design clocks false paths area
u 72 17,009 gates
(90 — 10 MH2) Datat
A 1
(90 MH2) 0 18,211 gates
3 9 127,416 gates
. (80, 75, 9 MH2) 4109
1
(80 MH2) 0 127,479 gates

It was pretty difficult to meet the 90 MHz target with design A and there was a lot of
logic running at slower frequency clocks, which led to a 7% area increase.

Design B resembles more the typical case when thetip is best applicable; one main
clock running at a high frequency and several interfaces at various frequencies that are
directly connected to synchronization mechanisms. Since thereis very littlelogic in the
various clock domains except the main one, over constraining does not lead to alarger
design size (below 0.05% areaincrease).

That simple method, when applicable at low cost, presents the advantage of drastically
reducing the number of path groups, thus enhancing synthesis runtimes; it also simplifies
constraints, thus analysis and reduces the risk of false paths that would hide real viola-
tions. However, if the strategy is not applied at chip level, it may still be necessary to write
constraints with false paths. By over constraining the design, that method increases the
module area and may even cause false timing violations.

To avoid false paths, another possibility isto define all clocks as multiples of each other;
instead of defining 100 MHz, 90 MHz and 48 MHz, it is possible to define 100 MHz,
100 MHz and 50 MHz with no false paths. That over-constrains the design less than the
previous method, but several clocks are declared.

5.0 Oneclock issues

Thefinal chapter isonly dedicated to address afew issuesin the definition of clocksfor
synthesis. Those problems were encountered in some of our projects and the solutions we
found are described below.

5.1  Over constraining a design using both edges of the clock

To over-constrain a design through its clock definition, one usually reduces the cycle
time. That technique has a major drawback when both edges of the clock are used (clock-
gating latches, particular bus protocols, DDR interfaces, latch-based designs, etc.).

For example, a design target frequency is 10 ns, it is synthesized with a9 ns cycle time
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and the synthesis yields a violation of 0.75 ns; both clock edges are used and some paths
last half of the clock cycle (i.e. 5 nstarget and 4.5 ns constraint). One of those paths has a
violation of 0.7 ns after synthesis and was left unoptimized since its violation is less than
the worst constraint violation. Unfortunately, once we switch back to thereal cycletime
target, thereisnow a 0.2 nsviolation due to that path.

The suggestion is to use the clock uncertainty parameter instead of the clock cycle defi-
nition when over constraining the design. By keeping a cycle time of 10 ns and adding
1 nsto the clock uncertainty, all the paths will see the same absolute additional constraint
and there won'’t be any surprises when the original constraint is restored.

5.2  Multipleinsertion delays

In the case of manually instantiated clock-gating cells or when late/early clocks are used
for synchronous hardmacros (hardl P, memories, etc.), there are multiple insertion delays
for the same frequency clock and specia care need be taken for paths starting from one
insertion delay and finishing at another.

The problem arises when the insertion delay deltais not guaranteed as in the case of
clock-gating cells. Let us consider such an example:

The clock-gating cells are instantiated in the middle of the clock tree, which meanstheir
latches receive an early clock compared to the clock used by the flip-flops to generate the
enable that goes to the latch. With standard synthesis constraints defined at the clock port,
the insertion delay seen by the clock-gating latchesis equal to the insertion delay seen by
the other flip-flops. When the clock tree has been inserted, the clock-gating latches are
clocked earlier than the flip-flops that generate the enable, which means the enable has to
be stable earlier than synthesis determined. If the enableisfairly complex to generate (i.e.
with many levels of combinatorial logic), that can lead to large timing violations that are
identified very late in the design cycle.

The solution that was selected requires the definition of multiple clocks running at the
same frequency, but with different hook points and insertion delays:
create_cl ock -period $CLOCK PER -nane ROOT_CLK \

[get _ports “* clk”]
set _clock_| atency $I NSERTI ON_DELAY [get _cl ocks { ROOT_CLK}]

create_clock -period $CLOCK PER -nane GATE_CLKOUT \
[get _pins -hierarchical “*_clk_gate/cl kout”]
set _cl ock_l at ency $I NSERTI ON_DELAY [ get _cl ocks { GATE_CLKOQOUT}]

create_cl ock -period $CLOCK _PER - name GATE_CLKI N \
[get _pins -hierarchical “* clk _gate/clkin”]
set _clock_latency O [get_clocks {GATE CLKI N}]

The latchesinside the clock-gating cells see anull insertion delay whereas the flip-flops
that generate the enable that goes to the latch see a normal insertion delay; that over con-
strains the enable since the insertion to the latch is guaranteed to be greater than zero. If
that constraint istoo difficult to achieve, the zero value can be replaced by alarger valueif
timing cannot be met. However, that non-null value becomes a constraint for Clock Tree
Synthesis since the clock-gating cell must receive a clock with more insertion delay than
the synthesis constraint.
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6.0 Conclusion

We have seen several simple mechanisms that can replace complex clocking schemes.
They can drastically reduce the design effort in timing analysis, DFT and back-end. Their
drawbacks have to be pondered with today’s design constraints; in deep sub-micron tech-
nology, logic is cheap but time-to-market and bug-free designs are much more challenging
than before. If some simplification helps you achieve those goal's, do not be concerned too
much about slight area increases; you need your design on schedule and with all the fea
tures.

Another reason why designs tend to use multiple clocksis the reuse. No designer wants
to risk modifying a modul e that already works, even if that creates alot of trouble because
the module does not follow today’s rules (DFT, edge triggered flip-flops, etc.). So, the
chip design rules are adjusted and alot of timeislost from integration to layout through
functional verification and DFT because several small modules are sometimes five to ten
yearsold.

Let usstop that. The only case when adesigner should not use good synchronous design
practice is when there isareal technical improvement (latches for speed, asynchronicity
when drawbacks of synchronous systems are unacceptable, etc.), not because of reuse.
Reuse is meant to reduce time-to-market, not to cost weeks or even months of additional
work to integration, verification, backend and other teams.

Do not be afraid to rewrite completely old designs implemented with out-of-date tech-
nigues. They can be replaced by friendly clocking schemes, positive edge-triggered flip-
flops, etc. There may be more time spent in solving issues due to old coding styles, than
redesigning the whole thing from scratch. It is always possible to reuse the testbench and
regression simulations to check the new design does not have more bugs than the old one.
And it'smore fun writing RTL than struggling with tools on a design you don’t understand
everything.

A last word about Power Compiler that helpsto reduce power consumption of adesign;
there still needs manual instantiation of clock-gating cells to achieve an optimal power
reduction since several levels of clock-gating cells are often needed. The numerous test
cases studied when writing this paper showed that getting the best clock-gating cell struc-
tureisnot an easy task. Thisisajob for Power Compiler; find common factorsin the
enables of registers, accept to have flip-flops with feedback loop and clock-gating cell,
group them to reach the minimal bank size limit, explore multiple solutions with several
levels of clock gating and determine the most efficient one.
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